МЕТОД ЗОНДИРОВАНИЯ
СТАНОВЛЕНИЕМ ПОЛЯ В БЛИЖНЕЙ ЗОНЕ
И РЕЗУЛЬТАТЫ ЕГО ПРИМЕНЕНИЯ
НА СИБИРСКОЙ ПЛАТФОРМЕ

(04.00.12—геофизические методы поисков и разведки месторождений полезных ископаемых)

Автореферат
dиссертации на соискание ученой степени
dоктора геолого-минералогических наук

После ВАКа

Новосибирск—1977
Работа выполнена в Сибирском научно-исследовательском институте геологии, геофизики и минерального сырья (СНИИГТГИМС) Министерства геологии СССР.

Официальные оппоненты:
Доктор технических наук, профессор Л.Л.Ваньян
Доктор геолого-минералогических наук, профессор К.А.Савинский
Доктор геолого-минералогических наук, профессор В.В.Самоонов

Оппонирующая организация Восточно-Сибирский институт геологии, геофизики и минерального сырья (ВостСНИИГТГИМС).

Защита состоится " " I977г. в 10 часов на заседании специализированного Совета ДО02.50.06 при Институте геологии и геофизики Сибирского отделения АН СССР в Институте геологии и геофизики СО АН СССР по адресу: 630090 Новосибирск, Университетский проспект 3.

С диссертацией можно ознакомиться в библиотеке Института геологии и геофизики СО АН СССР

Автореферат разослан " " I977г.

Ученый секретарь специализированного Совета ДО02.50.06 при Институте геологии и геофизики СО АН СССР
кандидат физ.-мат. наук Г.А.Поспелова
В конце пятидесятых-начале шестидесятых годов основным методом структурной электrorазведки, использующим искусственные поля, являлся метод зондирования становлением поля в дальней зоне. Обладая рядом принципиальных преимуществ перед методами постоянного тока, этот способ разведки сыграл значительную роль в изучении строения многих регионов страны. Однако, необходимость применения установок, размеры которых в 5-6 раз превышают глубину залегания картироваемых горизонтов и связанная с этим ограниченная детальность исследований являлись одним из главных препятствий к широкому распространению метода зондирования становлением поля в дальней зоне.

Принципиальные предпосылки для обоснования возможностей изучения глубоко залегающих пород при регистрации переходных процессов на сколько угодно малом расстоянии точки наблюдения от источника содержались уже в первых работах А.Н. Тихонова, С.М. Зинмана, О.А. Скугаревской, Л.Л. Ванькина, Дж. Уэйта, Д.Н. Четаева, П.П. Фролова и др. Тем не менее только в 1966-1968 гг В.А. Сидоровым, В.В. Тикшаевым, А.А. Кауфманом, Г.М. Морозовой, Г.Г. Обуховым, Е.М. Лоховским, В.И. Терехиным, Г.А. Исаковым, Б.И. Рабиновичем и др. была экспериментально и теоретически показана возможность зондирования становлением поля в ближней зоне при решении задач структурной разведки.

При этом было установлено, что для относительно больших времен регистрации и малых разносов установок почти все компоненты электромагнитного поля характеризуются повышенной чувствительностью к изменению сопротивления среды и продольной проводимости разреза. Эта особенность поведения поля в поздней стадии в сочетании с сокращением размеров установок создают предпосылки для повышения детальности исследований методом зондирования становлением поля в ближней зоне (ЭСБЗ) по сравнению с работами в дальней зоне и другими методами электrorазведки (вертикальные электрические зондирования, частотные и магнитотеллурические зондирования).

Реферируемая работа посвящена обоснованию метода зондирования становлением поля, разработке способов интерпретации, исследованию основных технических параметров аппаратуры и методики проведения полевых наблюдений, опробованию и внедрению
метода ЭСБЗ в практику геофизических работ в основном на Сибирской платформе – крупнейшей геологической провинции страны, потенциальные запасы нефти и газа в которой оцениваются очень высоко.

Эти исследования выполнены при участии большого коллектива научных сотрудников, инженеров и техников лаборатории электrorазведки СНИИГРИМСа и лаборатории электромагнитных полей ИГГСО АН СССР. Автор считает своим приятным долгом поблагодарить всех тех, кто совместно с ним принимал участие в описываемых работах, и, в первую очередь, М.М. Гольдмана, А.К. Захаркина, Э.Л. Иомдину, Г.А. Исакова, Д.И. Кузина, Н.И. Саввину, В.В. Финогеева, В.Н. Шатохина, Е.К. Матвеева, Г.М. Морозову, В.П. Соколова, Л.А. Табаровского.

Научная новизна.

I. В теории метода ЭСБЗ

а) Выполнено сопоставление разрешающей способности, глубинности и локальности исследования установок зондирования стационария поля в ближней и дальней зонах. Проведено сравнение разрешающей способности метода ЭСБЗ с другими методами электrorазведки (ВЭЗ, ЧЭ).

б) Исследованы основные характеристики становления компонент электромагнитного поля электрического и вертикального магнитного диполей и регистрирующих их установок в ближней зоне.

в) Выявлены основные закономерности влияния рельефа фундамента (типа ступень, горст) и высокоомного экрана на производную по времени от вертикальной компоненты магнитного поля электрического диполя.

г) Исследовано поведение нестационарного электромагнитного поля в присутствии проводящего диска, расположенного в двухслойной среде соосно с источником.

д) Получены асимптотические выражения компонент электромагнитного поля электрического и вертикального магнитного диполей для поздней стадии становления в четырехслойных средах с проводящим и изолирующим основанием.

2. В методике интерпретации

а) Выявлены основные закономерности изменения кривых кажущегося удельного сопротивления в зависимости от параметров разреза и установки.

б) Разработаны приемы послойной количественной интерпретации
и методы графического построения кривых $\rho_\tau(\hat{B}_z)$ и $\rho_\tau(\hat{B}_z^2)$, установлены пределы действия принципа эквивалентности.

в) Исследованы различные приемы интерпретации кривых $\rho_\tau(\hat{B}_z)$, полученных над двухслойным разрезом, содержащим структуры опорного горизонта, высокоомного экрана, тонкий проводящий диск и поверхностные неоднородности.

g) Проведено сопоставление эффективности определения параметров разреза по кривой S_τ и палеточных способов для кривых ρ_τ в различных типах горизонтально-слоистой среды.

3. В методике полевых работ и разработке аппаратуры

а) Исследованы различные схемы наблюдений производной по времени от вертикальной компоненты магнитного поля электрического диполя для выявления малоамплитудных антиклинальных поднятий и определения их линейных размеров при наличии в разрезе пологозалегающих и крутоходящих высокоомных пропластков—основного вида геологических помех на Сибирской платформе.

б) Для всех трёх типов установок, регистрирующих \hat{B}_z (с гальваническим и индуктивным возбуждением при разнесённых и соосных рамках), исследован допустимый уровень методических и топографических погрешностей.

в) Разработаны способы учета недиапольности установок.

г) Исследованы параметры аппаратуры, регистрирующей становление поля в ближней зоне при широком изменении геоэлектрических характеристик разреза, послужившие основой при создании цифровой электроразведочной станции "Цикл", защищённой авторским свидетельством.

4. Обоснована возможность применения метода ЗЭБЭ для выявления и прослеживания зон развития водоносного коллектора на Сибирской платформе.

Практическая ценность заключается в разработке основных вопросов, связанных с применением наиболее перспективного метода электроразведки — зондированием становлением поля в ближней зоне и обосновании возможности и эффективности использования его в геоэлектрических условиях Сибирской платформы для изучения строения осадочной толщи.
под экранами (трапами, пластами солей и т.п.), а также для выявления зон развития пласта-коллектора, насыщенного рассольными водами, подпирающими нефтяные и газовые залежи.

Апробация работы и реализация результатов в промышленности.

За период 1971—1976 гг. методом ЭСБЗ на Сибирской платформе проведено около 2400 зондирований и выполнено свыше 7000 километров маршрутных и площадных работ. Полученные результаты подтвердили обоснованность проведенных исследований и показали высокую эффективность метода при решении структурных задач и выявлении водоносных коллекторов. Принято решение о проведении работ методом ЭСБЗ на всех структурах, передающихся под глубокое бурение, с целью более рационального размещения скважин. Метод зондирования становлением поля в ближней зоне и аппаратура "Цикл" внедрены и широко используются в практике геофизических работ всех геологоразведочных организаций, проводящих исследования на Сибирской платформе: трестах "Красноярскнефтегазразведка", "Якутнефтегазразведка", Восточного геофизическом тресте, а также в ряде других организаций. При опробовании и внедрении метода ЭСБЗ большая помощь была оказана работниками Восточного геофизического треста — А.Е.Лаврентьевой, М.М.Мандельбаумом, В.М.Панкратовым, М.А.Портнягиным, А.И.Салпинным; треста "Красноярскнефтегазразведка" — В.М.Бубновым и В.А.Шапоревым; треста "Якутнефтегазразведка" — А.А.Гудковым, Ю.Л.Миткиным, В.П.Никитиным, А.З.Соловьёвым; Юной геофизической экспедиции Таджикской ССР — Г.В.Коноваловым и А.П.Максимовым; треста "Татнефтегеофизика" — Б.Л.Гольштейном. Всем им автор выражает свою искреннюю признательность. Автор приносит свою глубокую благодарность профессору В.С.Суркому за постоянное и доброжелательное внимание к работе, обсуждение результатов научных и полевых исследований, помощь в организации и выборе основных направлений работ.

Основные защищаемые положения.

I. Метод зондирования становлением поля в ближней зоне обладает большей разрешающей способностью и локальностью исследований по сравнению с зондированиями в дальней зоне.
2. Метод ЗСБЗ характеризуется более узкой областью действия принципа эквивалентности в трехслойных средах по сравнению с методами ВЭЗ, ЧЭ, МТЭ.

3. Разработанная методика количественной интерпретации кривых кажущихся удельных сопротивлений позволяет определять параметры разреза в горизонтально-слоистых средах, а с учетом рекомендаций, полученных по результатам физического и математического моделирования, и в разрезах, осложненных структурами фундамента (типа "уступ", "город") и высокоомного экрана.

4. Разработанная методика зондирования становлением поля в ближней зоне и измерительная аппаратура "Цикл" позволяют в сложных тектонических условиях Сибирской платформы применять метод ЗСБЗ для изучения осадочного чехла под траншами.

5. Метод зондирования становлением поля в ближней зоне может быть применен для выявления и прослеживания в палеозойской части Сибирской платформы пласта-коллектора, насыщенного минерализованными водами.

Структура диссертационной работы. Диссертация состоит из четырех частей, соответствующих основным разделам метода: теория, методика интерпретации, методика проведения полевых работ и требования к аппаратуре, результаты опробования и внедрения метода ЗСБЗ на Сибирской платформе. Результаты изложены на 293 страницах машинописного текста, иллюстрированы рисунками на 76 листах и табличным материалом на 48 страницах. Библиография включает 237 наименований.

ЧАСТЬ I. НЕКОТОРЫЕ ВОПРОСЫ ТЕОРИИ МЕТОДА ЗСБЗ

В первой главе "Сравнительный анализ компонент электромагнитного поля в горизонтально-слоистой среде" исследовано несколько вопросов.

I. Проведено сопоставление зондирований становлением поля в дальней и ближней зонах по следующим характеристикам: разрешающая способность, глубинность и локальность исследований. Анализировались кривые зондирований, рассчитанные, в ос-
новном, по значениям B_z. В соответствии с определением, введенным Л. Л. Баньковым, под дальней зоной понимается та область разносов установок (г), величина которых в 5-6 раз превышает глубину залегания картироваемого горизонта (Н). В диссертации, на основе сопоставления кривых зондирования типа Н с конечными и предельными ($r \rightarrow 0$) разносами дано определение ближней зоны как области разносов, где $r \leq 0,7$ Н.

Разрешающая способность анализировалась на моделях однородного полупространства и двухслойной среды с изолирующим основанием. Показано, что почти все компоненты электромагнитного поля (кроме электрического поля электрического диполя) характеризуются в поздней стадии становления более высокой степени зависимости от сопротивления или продольной проводимости среды, чем в ранней стадии.

Проведено сопоставление трехслойных кривых кажущихся удельных сопротивлений в методах ЭСВЗ, ЗСМ, ВЗЗ и ЧЗ, свидетельствующее о большей разрешающей способности зондирований становлением поля в ближней зоне. В качестве иллюстрации рассмотрено несколько примеров, в частности, оценена возможность вызвания маломощных хорошо проводящих пластов (например, водонасыщенных коллекторов, пологозалегающих рудных тел и т.п.) установками, регистрирующими становление электрического поля на различном расстоянии от вертикального магнитного диполя. В таблице I приведены минимальные значения относительной проводимости S/S_1, при которых максимальная величина создаваемого аномального поля превышает 50% от поля, обусловленного вмещающей средой. Как видно, разрешающая способность зондирований уменьшается с увеличением относительного разноса.

Таблица I

<table>
<thead>
<tr>
<th>r / H</th>
<th>1/4</th>
<th>1/2</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/S_1</td>
<td>0,55</td>
<td>0,55</td>
<td>0,55</td>
<td>0,6</td>
<td>0,75</td>
<td>1,3</td>
</tr>
</tbody>
</table>

Глубинность установок характеризовалась той максимальной глубиной, на которой искомый объект создает аномальное поле, в заданное число раз превышающее уровень поля помех, обусловленных как внешними источниками электромагнитного поля, так и различного рода геологическими образованиями. Рассмотрено две модели, соответствующие характеру задач, решаемых на Сибирской
платформе (изучение рельефа опорного горизонта и поиск зон развития водонасыщенного пласта-коллектора): двухслойная среда с изолирующим и проводящим основанием и плоскость \(S \), расположенная в однородном полупространстве. Здесь геологической помехой является перекрывающая или вмещающая среда, а учет внешних помех осуществлен ограничением уровня сигнала \(10^{-6} \) в.

Анализ показал, что наибольшей глубинностью в этих условиях характеризуются установки с \(r/H = 1-3 \). Глубинность установок дальней и ближней зоны примерно одинакова, однако, при уменьшении различия по электрическим свойствам между искомым объектом и вмещающей средой большая глубинность отмечается в методе ЭСВЗ.

Локальность зондирования анализировалась на модели однородного полупространства, в котором на глубине \(H \) расположен сосново с вертикальным магнитным диполем проводящий диск радиуса \(a \). В этом случае локальность может быть охарактеризована величиной \(a/H \), при которой различие максимальных значений относительного аномального поля, созданного диском и проводящей плоскостью при тех же величинах \(H \) и \(S \), не превышает, допустим, 30%. Очевидно, что те установки, для которых это условие выполняется при меньших радиусах диска, характеризуются большей локальностью исследования. Полученные результаты (в табл. 2 приведены некоторые фрагменты для диска с \(S = 10 S \)) свидетельствуют об уменьшении локальности зондирования при увеличении разности устанавки.

<table>
<thead>
<tr>
<th>(r/H)</th>
<th>0,25</th>
<th>0,6</th>
<th>1</th>
<th>1,5</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a/H)</td>
<td>1,9</td>
<td>2,0</td>
<td>2,2</td>
<td>2,4</td>
<td>2,6</td>
<td>3,3</td>
<td>4,3</td>
</tr>
</tbody>
</table>

В результате делается вывод о большей разрешающей способности, детальности исследования, а в ряде случаев и глубинности метода ЭСВЗ по сравнению с зондированием в дальней зоне. Кроме того, использование установок с малыми разносами облегчает организацию работ и обеспечивает более определенную привязку результатов зондирования.

2. Проведено сопоставление основных характеристик компонента электромагнитного поля и регистрирующих их установок в ближней зоне. Исследование выполнено, в основном, на опиравшихся выше моделях.
Показано, что наибольшей разрешающей способностью обла-
дают горизонтальные (кроме H_y) компоненты магнитного поля и
их производные по времени. В качестве примера, в табл. 3 приве-
ведены минимальные значения относительной проводимости плос-
кости S, при которых наибольшая величина аномального поля
превышает 50% от поля на поверхности однородного полупространства в установках, где источником поля является вертикаль-
ный магнитный диполь.

<table>
<thead>
<tr>
<th>(\frac{S}{S_1})</th>
<th>(\dot{B}_r)</th>
<th>(\dot{H}_r)</th>
<th>(\dot{B}_z)</th>
<th>(\dot{H}_z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>0,3</td>
<td>0,4</td>
<td>0,5</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Доканьность установок зондирования анализировалась на
модели вертикального контакта проводящего пласта с изоля-
тором в двухслойном разрезе мощностью H, подстиляемом непрово-
дящим основанием. При этом локальность установок характеризо-
валась величиной \(\frac{d}{H} \) (где d — расстояние от центра ус-
тановки до контакта), для которой при фиксированном значении
\(\frac{r}{H} \) (она определяется глубинностью исследования) влияние
вертикального контакта превышает определенную величину, нап-
ри мер 15%. Как видно из табл. 4, где приведены результаты фи-
зического моделирования, наибольшей локальностью при иссле-
довании данной модели горизонтально-неоднородной среды характе-
ризуются установки с индукционным возбуждением поля и ориен-
тированные параллельно простиранию контакта.

<table>
<thead>
<tr>
<th>(\frac{r}{H})</th>
<th>(\dot{B}_r^{II})</th>
<th>(\dot{B}_z^{II})</th>
<th>(\dot{B}_r^{I})</th>
<th>(\dot{B}_z^{I})</th>
<th>(\dot{B}_r)</th>
<th>(\dot{B}_z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II,I</td>
<td>10,4</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,4</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II,II</td>
<td>14,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\frac{d}{H})</th>
<th>(\dot{B}_r)</th>
<th>(\dot{B}_z)</th>
<th>(\dot{B}_r)</th>
<th>(\dot{B}_z)</th>
<th>(\dot{B}_r)</th>
<th>(\dot{B}_z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I,4</td>
<td>2,9</td>
<td>3,8</td>
<td>4,2</td>
<td>4,7</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>I,8</td>
<td>2,9</td>
<td>3,8</td>
<td>4,2</td>
<td>4,7</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>I,5</td>
<td>2,9</td>
<td>3,8</td>
<td>4,2</td>
<td>4,7</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>2,9</td>
<td>3,8</td>
<td>4,2</td>
<td>4,7</td>
<td>4,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Индексами I и II обозначены результаты наблюдений уста-
новками, ориентированными вкрест и по простиранию контакта, а знаками + и − те, у которых ближе к контакту расположен соответственно магнитный или электрический диполь.

В первой главе, кроме того, исследуются
- особенности поведения компонент электромагнитного поля и э.д.с. при возбуждении поля электрическим и вертикальным магнитным диполями в зависимости от сопротивления полупространства, времени становления и разноса установки;
- асимптотические выражения компонент поля в поздней стадии становления для многослойных (четырехслойных) горизонтально-слоистых сред и дано изложение методики их получения;
- связь между э.д.с., наведенной в установках с концентрическими соосными петлями, и параметрами горизонтально-слоистого разреза;
- способы представления результатов наблюдений, при этом показана невозможность нормирования э.д.с. по формулам однородного полупространства без предварительного определения ρ₁ и обоснована целесообразность трансформации регистрируемого поля в методе ЭСБЗ в кривые кажущихся удельных сопротивлений путем нормирования соответствующим выражением для однородного полупространства в поздней стадии становления.

Результаты, приведенные в главе 2 "Зондирования становлением поля в ближней зоне в горизонтально-неоднородных средах", базируются, в основном, на данных физического моделирования, выполненного на установке, созданной в СНИИГТИИМСе В.Н. Шатохиным.

Как известно, обоснованный выбор методики разведки и способов интерпретации, особенно в районах со сложным геоэлектрическим строением, невозможен без изучения влияния неоднородностей горизонтально-слоистого разреза на измеренные компоненты электромагнитного поля. Сибирская платформа, разрез которой характеризуется сложностью тектонического строения, наличием высокомеловых экранов, массовым распространением пластовых и секущих интрузий трассов, остревой вечной мерзлотой и т. п., несомненно относится к числу подобных районов.
Поэтому в работе большее внимание удалено изучению влияния и степени проявления в результатах наблюдений ЭСБЭ перечисленных особенностей строения осадочного чехла.

Исследования выполнялись в электролитической ванне площадью 4 х 4,5 м с установкой, измеряющей производную по времени от вертикальной компоненты магнитного поля на экваторе электрического диполя и расположенной на поверхности двухслойного разреза, осложненного диэлектрическими нарушениями (вертикальный контакт), рельефом фундамента (уступ, горст) и геологическими помехами (тонкие высокоомные пропластки - экраны, полого- и крутоозалегающие). Модели изучаемых структур изготовлялись из диэлектрических материалов.

Результаты, полученные над структурами типа ступень и горст, в общих чертах сводятся к следующему.

1. Наличие в разрезе вертикальной границы приводит к увеличению поля, измеряемого установкой, расположенной вкрест проявлений, если электрический диполь находится ближе к высокоомной среде (минусовая установка) и к уменьшению, если ближе магнитный диполь (плюсовая установка). Для установки, ориентированной по направлению контакта (линия AB вкрест проявления), отмечается уменьшение вертикальной компоненты магнитного поля.

2. Влияние вертикальной части структуры основания на результаты зондирования становлением поля в поздней стадии меньше оказывается в установке, расположенной параллельно контакту, и наибольшее в минусовой установке. Поэтому, для обнаружения малоамплитудных структур целесообразнее использовать установки, ориентированные вкрест проявления. В этом случае горст с амплитудой 7% от глубины залегания создает аномальный эффект в 15%.

3. Влияние структуры возрастает с увеличением ее амплитуды и (до определенного предела) размеров. В установках, ориентированных вкрест проявления двумерного горста, относительная ширина которого l/H < 1, аномальный эффект не превышает 15% при амплитуде структуры в 13%.

4. При T/H > 4 (где H - глубина залегания опорного гори-
зона под центром установки) влияние неоднородностей основания тем значительнее, чем больше время регистрации процесса становления.

5. Рельеф фундамента проявляется более локально в результатах измерений параллельной установкой и комбинированных систем наблюдений: взаимной и симметричных.

6. В благоприятных условиях местоположение структур может быть определено при качественной интерпретации графиков профилирования (величин $\frac{\Delta y}{\Delta}$ или p_τ) на временах, соответствующих (и несколько больших) минимуму кривых зондирований, а также по графикам изменений значений p_τ_{\min} и τ_{\min}. Наиболее уверенно местоположение структур устанавливается при анализе наблюдений встречных установок. Необходимо заметить, что расстояние между экстремумами графиков профилирования (d_τ) соответствует линейным размерам горста (с ошибкой менее 10 %) лишь при $\frac{t}{H} > 3$ (при меньших значениях $d_\tau > t$).

7. Достоверность определения параметров проводящей толщи в пределах горста повышается с увеличением его размеров и уменьшением амплитуды. Использование для этой цели координат минимума кривых зондирований (с предварительным уточнением отношения τ / H) дает более точные результаты при вычислении мощности слоя, чем его продольной проводимости. Амплитуда поднятия определяется с меньшими ошибками по кривой зондирования взаимной и симметричной ("АВ — петля — АВ") установками.

8. Присутствие в разрезе горизонтального высокоомного экрана приводит к уменьшению аномального эффекта от неоднородностей нижележащей толщи. Оно тем значительней, чем ближе к краю структуры расположена установка и особенно заметно на малых временах регистрации.

Одновременно с этим возрастает расстояние между экстремальными точками на графиках профилирования, что ухудшает точность определения размеров подэкранной структуры.

Экранирующее влияние горизонтальных высокоомных пропластков меньше проявляется в результатах наблюдений с комбинированными установками (взаимной и симметричными) и при
измерения вертикальной компоненты магнитного поля вертикального магнитного диполя.

Результаты физического моделирования двухслойных разрезов, содержащих негоризонтальные изолирующие пропластки (экранны), позволяют сделать следующие общие выводы и рекомендации.

I. Присутствие в разрезе наклонно-залегающего высокоомного пропластка приводит к увеличению поля, измеряемого установкой, ориентированной вкрест простирания неоднородности, если ближе к последней расположен электрический диполь и к уменьшению поля — если магнитный, а также при наблюдениях с параллельной установкой. Эти искажения возрастают с увеличением времени регистрации процесса становления, угла наклона и линейных размеров экрана и с уменьшением глубины его залегания.

При расположении параллельной установки над сводом антиклинальной складки экрана отмечается увеличение наблюдаемого поля по сравнению с аналогичными измерениями над горизонтально-слоистым разрезом. Значения аномального поля при больших временах регистрации практически не меняются, при этом они превосходят величину искажающего эффекта в других типах установок. В частности, если в установке, ориентированной вкрест простирания, электрический диполь расположен над сводом структуры экрана, то влияние последней незначительно.

II. В благоприятных условиях местоположение структуры экрана может быть определено путем анализа графиков изменения поля (или разрезов сопротивлений) для фиксированных времен регистрации переходного процесса. При картировании свода складки высокоомного пропластка целесообразнее использовать данные, полученные с установкой, ориентированной по её простиранию.

III. Для исключения влияния структуры экрана следует применять комбинированные схемы наблюдений. В частности, вблизи неоднородности и над моноклиналью с небольшим углом наклона — взаимную, а над структурой — симметричную с двумя магнитными диполями.
4. Так как степень искажения кривых зондирования горизонтальными неоднородностями возрастает с увеличением времени регистрации процесса становления, то при проведении количественной интерпретации более точные результаты дадут те способы, в которых используются участки кривых с относительно малыми $\frac{t}{H}$. В этом случае, когда влияние структуры экрана приводит к параллельному смещению кривой зондирования относительно оси ординат, оно может быть выявлено путем сравнения величин удельных сопротивлений верхнего слоя, найденных по ординате и абсциссе кривой зондирования и исключено при дальнейшей интерпретации.

5. Недоучёт влияния структур высокоомного пропластка может привести к значительным ошибкам определения параметров разреза, особенно величин удельного электрического сопротивления и продольной проводимости.

6. Характер совместного влияния рельефа опорного горизонта и структуры перекрывающего его непроводящего пропластка может быть качественно представлен путем суммирования аномальных эффектов от каждого из них. Это позволяет использовать выводы, полученные при анализе результатов моделирования над относительно простыми моделями, при проведении работ в районах со сложным геоэлектрическим разрезом.

В этой же главе анализируются основные закономерности поведения нестационарного поля в присутствии тонкого диска, расположенного в двухслойной среде соосно с источником. Рассматривались диски с постоянной продольной проводимостью и те, у которых радиальное изменение определялось зависимостью:

$$S(R) = S_0 \left(1 - e^{-3(R/\alpha)^\pi}\right), \quad \pi = 1, 2, 3,$$

апроксимирующей в ряде случаев геоэлектрическую характеристику пласта-коллектора на участке водонефтяного (газового) контакта, приводовской части структуры, где уменьшается мощность проводящих отложений, и т.п.

Исследования, выполненные совместно с М.М. Гольдманом для всех компонент электромагнитного поля вертикального магнитного диполя, позволили определить минимальные размеры и
наименьшую относительную проводимость, при которых диск может быть выявлен по результатам наблюдений, оценить глубинность исследований, проанализировать характер изменения кривых зондирования и сопоставить различные приемы их интерпретации.

ЧАСТЬ II. АНАЛИЗ КРИВЫХ ЗОНДИРОВАНИЯ И МЕТОДИКА ИХ КОЛИЧЕСТВЕННОЙ ИНТЕРПРЕТАЦИИ

В этом разделе излагаются результаты анализа и методика интерпретации кривых зондирования становлением поля для установок, измеряющих B_z от электрического и вертикального магнитного диполей. Использование приемов учёта влияния недипольности установок, изложенных в третьей части, дает также возможность применить разработанные способы интерпретации для определения параметров разреза по кривым ЭСБЗ, полученными соосными рамками (так называемые установки "петля в петле" и "совмещенные петли").

Исходным материалом при анализе служили теоретические кривые кажущихся удельных сопротивлений, рассчитанные по программе, созданной в ИГГ СО АН СССР. Для них разработана методика послойной количественной интерпретации в случае двухслойных и всех типов трехслойных разрезов и оценены погрешности рекомендуемых способов (они, в основном, не превышают 10%). Кроме того, исследованы беспалеточные приемы определения геоэлектрических параметров среды, позволяющие оценить обобщенные характеристики разреза (глубину залегания основания, суммарную продольную проводимость и среднее продольное сопротивление всей надпорной толщи). При небольших относительных разночах установок с этой целью рекомендуется найденные зависимости координат экстремальных точек от суммарных параметров разреза.

Совместно с рассмотренным выше анализом влияния негоризонтальных границ, разработанные способы интерпретации позволили обосновать методику проведения полевых работ и поисков структур.

В работе также исследована методика определения параметров разреза по кривым S_t, предложенная В.А. Сидоровым и
В.В. Тюкаевым. Показана целесообразность её применения в разрезах, приближающихся по своим параметрам к модели плоскости S.

Таблица 5

<table>
<thead>
<tr>
<th>№ скв.</th>
<th>Глубина залегания фундамента (м)</th>
<th>ЗСБЗ</th>
<th>бурение</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>650</td>
<td>2400</td>
<td>2396</td>
</tr>
<tr>
<td>I8</td>
<td>614</td>
<td>2400</td>
<td>2503</td>
</tr>
<tr>
<td>57</td>
<td>603</td>
<td>2540</td>
<td>2516</td>
</tr>
<tr>
<td>I48</td>
<td>602</td>
<td>2640</td>
<td>2708</td>
</tr>
<tr>
<td>70,71</td>
<td>3-кар</td>
<td>2860</td>
<td>2645</td>
</tr>
<tr>
<td>5</td>
<td>I-Н</td>
<td>2070</td>
<td>2040</td>
</tr>
<tr>
<td>I</td>
<td>I-Б</td>
<td>1910</td>
<td>1946</td>
</tr>
<tr>
<td>I-3</td>
<td>4-В</td>
<td>2030</td>
<td>1976</td>
</tr>
<tr>
<td>I-4</td>
<td>1-Г</td>
<td>2060</td>
<td>2010</td>
</tr>
<tr>
<td>4</td>
<td>P-651</td>
<td>2400</td>
<td>2396</td>
</tr>
<tr>
<td>49</td>
<td>P-571</td>
<td>2020</td>
<td>2070</td>
</tr>
</tbody>
</table>

Одним из рекомендуемых в работе методов количественного анализа является сопоставление интерпретируемой и теоретической кривых зондирования. Однако набор последних в альбомах палеток явно недостаточен, чтобы охватить все многообразие геоэлектрических условий. Разработанные в диссертации приёмы графического построения кривых позволяют быстро и с достаточно для практики точностью строить кривые зондирования при любых параметрах разреза. Это важно также для проверки правильности проведенной интерпретации, которая, как известно, может быть осуществлена (в пределах действия принципа эквивалентности) путем отождествления полевой кривой с графически построенной по полученным в результате интерпретации данным.

Проведенные полевые работы подтвердили эффективность разработанных приёмов количественной интерпретации. В частности, как свидетельствуют материалы сопоставления с данными бурения, ошибки определения глубины залегания опорного электрического горизонта по кривым зондирования без использования сторонних данных о параметрах разреза обычно не превышают 10%. В качестве иллюстрации в табл. 5 приведены результаты интерпретации кривых ЗСБЗ и данные последующего бурения по Непоко-Ботуобинской антенезе.

ЧАСТЬ III. ОСНОВНЫЕ ТРЕБОВАНИЯ К УСТАНОВКАМ И АППАРАТУРЕ

В МЕТОДЕ ЗСБЗ.

Реализация зондирования становлением поля в ближней зоне, т.е. измерении процесса становления установками, размеры которых
меньше глубины залегания исследуемого горизонта, предъявляет особые требования как к параметрам генераторного и приёмного датчиков, так и регистрирующей аппаратуре и форме возбуждающего импульса.

Выше отмечалось, что расчёты и исследования электромагнитных полей выполнены в основном для дипольных установок, в которых размеры источника и приёмника пренебрежимо малы сравнительно с расстояниями между ними. Сокращение этого расстояния при полевых работах методом ЭСБЗ может привести к тому, что величины датчиков поля окажутся соизмеримыми с разносом. В работе исследуются предельные размеры установок, при которых ещё возможно, без введения специальных поправок, использовать имеющийся теоретический материал и разработанные приёмы интерпретации.

Выполненные расчеты показали, что искажения кривых $B_2(\rho)$ не превышают 3%, если длина питания линии $L \leq 0,5\rho$, а для кривой становления $\tau_{\text{кор}} > 4$ при $L \leq 0,8\rho$. К такой же ошибке приводят измерения с установкой, в которой электрический диполь расположен на оси квадратной рамки, если длина её стороны $l \leq 0,3\rho$, а для $\tau_{\text{кор}} > 4$ менее 0,5ρ. В кривых зондирований, полученных установкой с разнесенными индукционными датчиками, влияние конечных размеров рамок максимально на участке смены знака поля ($\tau_{\text{кор}} = 3,545$), где, строго говоря, невозможна аппроксимация реальной системы наблюдений дипольной установкой. Но уже для $\tau_{\text{кор}} > 4$ ошибки в величине кажущихся удельных сопротивлений из-за недипольности не превышают 3% при $l/\rho \leq 0,3$. Для $\tau_{\text{кор}} > 4,8$ аналогичная погрешность имеет место в случае, когда длина стороны контура не превышает разноса установки. Что касается влияния конечных размеров квадратной приёмной рамки в установке с соосными датчиками, то оно не будет превышать указанной погрешности, если $l \leq 0,15L$, а для $\tau_{\text{кор}} > 4$ при $l \leq 0,25L$.

Однако, при решении ряда геологических задач возникает необходимость применения недипольных установок, например, линий АВ больших размеров ($L > \rho$) или квадратных соосных рамок. Для интерпретации результатов, полученных этими установками, необходимо либо специально рассчитывать многослойные кривые зондирования и разрабатывать способы количественного анализа, либо находить приёмы, позволяющие исполь-
зовать уже имеющиеся альбомы палеток и методику интерпретации для дипольных схем наблюдений. Первый способ требует больших дополнительных затрат и, что еще более важно, для разнесенных датчиков приводит к практически необозримому числу вариантов. Поэтому в работе предлагается способ учета влияния недополнительности, базирующийся на введении фиктивного разноса \(\gamma \varphi \), величина которого зависит от размеров датчиков и расстояния между ними. Так, например, для установки, в которой вертикальный магнитный диполь расположен на экваторе линии AB длиной \(L \),
\[r_{\gamma \varphi} = r \left[1 + 0,056 \left(\frac{L}{r} \right)^{3/2} \right]. \]
В таблице 6 приведены максимальные значения \(\tau / \gamma \) и \(\tau / r_{\gamma \varphi} \), при которых различие кривых \(\rho_{\gamma \varphi} \).

<table>
<thead>
<tr>
<th>(L/r)</th>
<th>(\tau / \gamma)</th>
<th>(\tau / r_{\gamma \varphi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>3</td>
<td>2,2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3,0</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>3,2</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>3,3</td>
</tr>
<tr>
<td>2,5</td>
<td>16</td>
<td>3,5</td>
</tr>
<tr>
<td>10/3</td>
<td>23</td>
<td>3,6</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>3,9</td>
</tr>
</tbody>
</table>

Таблица 6

регистрирующих электрические и вертикальные магнитные компоненты поля, а также установок с соосными рамками различных конфигураций.

В работе также исследуются топогеодезические требования, предъявляемые к установкам ЗСБА и обеспечивающие определение значений кажущихся удельных сопротивлений с ошибкой не более 5%: точность измерения линейных размеров, допустимые величины смещений, углов наклона и превышений датчиков. Анализ выполнен для всех трех типов установок, измеряющих \(B_z \) (с гальваническим и индукционным возбуждением при разнесенных и соосных рамках) во всем диапазоне времени регистрации.

Во второй главе обосновываются технические параметры аппаратуры, необходимой для регистрации становления поля в
ближней зоне. На основе анализа теоретических кривых зондирования установлена зависимость начального времени регистрации \(t_n \) от мощности \(h_i \) и удельного электрического сопротивления \(\rho_1 \) первого слоя:
\[t_n \approx 0.25 \times 10^{-6}, \frac{h_i^2}{\rho_1}. \]
Оценены также необходимые конечные времена регистрации, при которых возможно определение всех параметров разреза, и погрешности измерения \(t \), которые не должны превышать 2-3 % на начальных временах \(\frac{1}{t} \approx 5 \) и 0,9 % в поздней стадии. Получены выражения, характеризующие величину моментов установок, позволяющих регистрировать становление поля до времени, необходимых для определения всех параметров разреза. При их оценке учитывался уровень стационарных помех, спектральная плотность которых по данным наблюдений в ряде районов Сибирской платформы в первом приближении может быть оценена значением \(0.5 \times 10^{-11}, \frac{m^2}{\text{ГЦ}^2} \). Поскольку величина помех убывает с уменьшением частотного диапазона, то для уменьшения их уровня наряду с синхронным накоплением измеряемого сигнала рекомендуется фильтрация с переменной полосой пропускания. Кроме того, в аппаратуре должны быть предусмотрены способы подавления нестационарных и периодических помех.

В работе также приводится оценка возможности применения метода ECBE для изучения распределения электропроводности относительно глубоких слоёв земли: определения глубины залегания мантии и геоэлектрических параметров промежуточного проводящего слоя, о существовании которого свидетельствуют многочисленные данные магнитотеллурических зондирований в различных районах земного шара.

С целью выяснения возможностей повышения глубинности разведки, в диссертации исследуется оптимальная форма импульса тока, обеспечивающего максимальное значение регистрируемого сигнала в заданный момент времени при фиксированной величине энергии зондирующего импульса. Показано, что зондирующий импульс тока оптимальной формы должен иметь вертикальные фронты, а внутри импульса величина тока зависит от времени измерений и вида импульсной реакции среды, являясь её зеркальным отражением. Сопоставление характеристик импульсов прямоугольной и оптимальной формы показывает, что применение последней приводит к увеличению сигнала примерно в 1.5
раза. Однако, учитывая сложности формирования такого импульса и известные трудности, возникающие при интерпретации получаемых кривых зондирования, целесообразность его применения нам кажется проблематичной.

Поскольку в работе, на примере модели двухслойной среды, анализируются требования предъявляемые к импульсу тока прямоугольной формы: необходимая длительность, стабильность амплитуды, а также форма фронта выключения, создаваемого некоторыми типами силовых коммутаторов.

Изложенные в данной главе результаты исследования автора являются лишь частью работ, выполненных в этом направлении в СНИИГГимСе и послуживших основой при создании цифровой электrorазведочной станции "Цикл". Первый макет станции "Цикл-1" был применен при полевых работах летом 1970 г, а в 1974 году в электrorазведочных партиях трестов "Красноярскнефтегазразведка", "Якутнефтегазразведка" и Бестяхском геофизическом тресте, проводящих исследования на Сибирской платформе, использовались десять комплектов этой аппаратуры. Их опытная эксплуатация позволила уточнить требования к аппаратуре, измеряющей становление поля в ближней зоне, которые, как нам кажется, реализованы в станции "Цикл-2".

ЧАСТЬ II. РЕЗУЛЬТАТЫ ПРИМЕНЕНИЯ МЕТОДА ЗСБЗ НА СИБИРСКОЙ ПЛАТФОРМЕ.

Проверка эффективности рекомендаций по методике проведения работ и интерпретации кривых зондирования осуществлялась в различных геологических провинциях страны: на Сибирской и Русской платформах, в Таджикской депрессии и др. В диссертации приведены лишь те результаты применения метода ЗСБЗ на Сибирской платформе, в анализе которых автор принимал непосредственное участие. Это регионально-рекогносцировочные маршруты по рекам Нижняя Тунгуска (участок между пос.Сосново - пос.Приозерка, район р.Имбукан), Подкаменная Тунгуска (от пос.Омарат до пос.Байкит), Бахта, а также площадные исследования на Средне-Ботуобинском поднятии. В работе, по литературным и фондовым материалам, дается геологическая и геоэлектрическая характеристика разреза для каждого из районов.
Применение метода зондирования становлением поля в ближней зоне с аппаратурой "Диод" позволяет охарактеризовать строение данной территории до глубин примерно 3 – 3,5 км. Для изучения разреза на больших глубинах рекомендуется комплекс методов ЭСБЗ и МТЭ, совместное применение которых позволяет в значительной степени преодолеть недостатки каждого из них.

Первые полевые работы методом зондирования становлением поля в ближней зоне на Сибирской платформе были проведены в 1970 г по р. Нижняя Тунгуска. Сопоставление материалов количественной интерпретации кривых R_c с геологическим разрезом (рис.1а) свидетельствует об их хорошем совпадении. Результаты этих работ позволили сделать вывод о том, что применение метода ЭСБЗ дает возможность проводить расследование осадочной толщи, выделяя в ней несколько геоэлектрических горизонтов, и, в благоприятных условиях, картировать локальные структуры в осадочном чехле. Кроме того, важным обстоятельством при оценке применимости метода в Тунгусской синеклизе является то, что эти достаточно уверенные результаты были получены в районе развития тралловой интрузии.

Данные ЭСБЗ позволили провести более достоверную интерпретацию материалов магнитотеллурических наблюдений: установить тип геоэлектрического разреза (НКН), оценить величину среднего продольного сопротивления всей осадочной толщи и глубину залегания фундамента, которая в этом районе составляет около 6 км.

Аналогичные выводы были сделаны по материалам работ на Ненско-Ботуобинской антеклизе. Результаты сопоставления данных ЭСБЗ и последующего бурения по этой территории приведены выше в таблице 5. Заметим, что ошибки интерпретации, обусловленные упрощением модели разреза, в меньшей степени влияют на точность картирования рельефа опорного горизонта. В качестве иллюстрации, на рис.16 даны материалы интерпретации кривых R_c (δ^2) и сейсмовзведки МОВ по профилям Среднеоттуобинского поднятия. Комплексирование этих двух методов позволяет в ряде случаев определить мощность продуктивной монтанской свиты, что имеет большое значение при оценке перспективности района работ.

20
Сравнение результатов ЗСБЗ с геологическими данными (Н. Тунуска).

Сопоставление результатов ЗСБЗ с данными МОВ (Средне-Ботубинское поднятие).

Рис. 1
Анализ геоэлектрических особенностей разреза платформы и полученных полярных материалов позволил обосновать возможность решения на данной территории еще одной задачи: выявления и оконтуривания пластовых-коллекторов, насыщенных минерализованными водами. Как уже упоминалось, для разреза Сибирской платформы, сложенного в основном карбонатными образованиями, характерно высокое в целом удельное электрическое сопротивление осадочной толщи \(\rho_z = 50 - 100 \text{ омм} \). Наряду с этим в кембрийских отложениях широко распространены рассолоносные горизонты, минерализация вод хлоркальциевого состава которых достигает 400–600 г/д. Проведенные в работе ориентировочные расчеты (они совпадают с экспериментальными данными К.С.Турицина) удельных сопротивлений пород \(\rho_n \), насыщенных этими водами, показывают, что, например, при температуре 30°C, концентрации солей 300 г/д и изменении коэффициента пористости от 10 % до 20 % \(\rho_n \) среднесгенерированных песчаников составляет 0–4 \(\text{ омм} \). Резкая дифференциация по сопротивлению между рассолоносным горизонтом и вмещающей средой (в том числе и нефтегазоносной частью пласта) является предпосылкой возможного выделения водонасыщенных коллекторов. Повышенная по сравнению с другими методами структурной электроразведки разрешающая способность и детальность исследований становлением поля в ближней зоне делает этот метод более перспективным при поисках и прослеживании пластов-коллекторов.

Во второй главе исследуются условия, при которых коллектор, насыщенный минерализованными водами, проявляется на кривых ЭСБЗ. Так как степень этого влияния зависит от геоэлектрической характеристики района, то, для конкретности, анализ проведен применительно к разрезу Непско-Ботуобинской антенны — одной из крупнейших (площадь более 250 тыс км²) и перспективных структур Сибирской платформы. В частности, на примере Ярактинского месторождения показано, что если в нижней части рассматриваемого разреза является пласт с проводимостью \(S_n = 10 \text{ сим} \), то его присутствие может быть установлено по кривым зондирования. При этом мощность пласта \(h_n \), насыщенного, например, водами хлоркальциевого соста-
ва с минерализацией 300 г/л при температуре 30°C в зависимости от коэффициента пористости K должна быть не менее:

<table>
<thead>
<tr>
<th>h, м</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>K %</td>
<td>13,5</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>6,5</td>
</tr>
</tbody>
</table>

В качестве примера на рис. 26 приведены теоретические кривые ρc для геоэлектрических условий, близких к разрезу Ярактинской площади, где продуктивные горизонты залегают на глубине 2000 м (осинский) и 2600 м (ярактинская пачка). Там же, для сравнения, приведена полевая кривая. Как видим, появление в разрезе двадцатиметрового водоносного слоя с ρn = 0,5 омм приводит к изменению формы кривой зондирования, что позволяет уверенно картировать этот горизонт.

Полевая проверка возможностей решения указанных задач была проведена совместно с Восточным геофизическим трестом на Ярактинском месторождении. Отметим, что залежь относится к литологической пластовой, экранированной выклиниванием пласта песчаника.

Полевые наблюдения выполнены на трёх профилях, выходящих в законтурую часть залежи. Первый профиль проходил через пребуренные разведочные скважины (рис. 2а). Как видно из сопоставления кривых зондирования с данными бурения, по профилю отчётливо прослеживается смена типов кривых при переходе от законтуры зоны к её центральной части. Насыщенные высокоминерализованными водами песчаники Ярактинской пачки в районе скв. I-III значительно увеличили проводимость нижней части разреза, что нашло отражение в характере кривой - появлении на ней перегиба и ниспадающей правой ветви. Величина суммарной продольной проводимости достигает 90 сим вместо 30-35 для разреза без водоносного коллектора.

По мере приближения к скважинам № 5, 8, 11, из которых получены притоки нефти, происходит постепенное замещение воды нефтью и, следовательно, сокращение мощности проводящих пород, что проявляется в выполаживании кривой ρc, а затем и исчезновении ниспадающей кривой ветви. При этом величина суммарной продольной проводимости уменьшается до 30 сим.

На двух других профилях наблюдается аналогичная картина, причём кривые зондирования на различных профилях уверенно коррелируют между собой: для точек, расположенных близко предпо-
Рис. 1

ГРАФИК 5

Рис. 2

1. \(\rho_1 = 75 \text{ ом-} \mu \text{м, } h_1 = 2600 \text{ м, } \rho_2 = \infty \)
2. \(\rho_1 = 75 \text{ ом-} \mu \text{м, } h_1 = 2600 \text{ м, } \rho_2 = 0.5 \text{ ом-} \mu \text{м, } h_2 = 70 \text{ м, } \rho_3 = \infty \)
3. \(\rho_1 = 75 \text{ ом-} \mu \text{м, } h_1 = 2000 \text{ м, } \rho_2 = 0.5 \text{ ом-} \mu \text{м, } h_2 = 20 \text{ м, } \rho_3 = 75 \text{ ом-} \mu \text{м, } h_3 = 600 \text{ м, } \rho_4 = \infty \)
лагаемой линии ВНК, характерны кривые типа Н с большими значениями S, а для северной части профилей, в зоне расположения продуктивных скважин, — кривые типа А.

Результаты, полученные на Якутинской площади, явились предпосылкой для постановки аналогичных исследований в других районах Сибирской платформы (на Непском и Мирнинском сводах Непско-Ботубинской антеклизы, в пределах Кумбинской площади Тунгусской синеклизы и т.п.) В диссертации, в качестве примера, приведены работы треста "Якутнефтегазразведка" на Верхневилючанской площади, поскольку материалы ЗСБЗ здесь могут быть сопоставлены с данными последующего бурения.

Анализ кривых зондирования, сделанный до окончания бурения скважин по работам первого этапа, позволил утверждать о наличии водоносного пласта-коллектора в местах заложения скважин 602, 603 и 650 и об отсутствии залегающих пластов вод (более вероятна смена флюида) в скважине 614, расположенной в своде Верхневилючанской структуры. Результаты бурения полностью подтвердили эту прогнозную оценку по вилючанскому горизонту. Однако, в скважине 603 выше по разрезу, в интервале 2256-2263 м (нижне-московская подсвита), вскрыт также продуктивный горизонт. Как следует из выполненных расчетов, пласт такой мощности применяемыми модификациями ЗСБЗ в геоэлектрических условиях Непско-Ботубинской антеклизы не выделяется, тем более при столь редком шаге зондирования (3-5 км), как на Верхневилючанской площади.

В результате описанных исследований Якутской комплексной геофизической экспедицией и СНИИТГиМСом были рекомендованы первоочередные объекты для проверки бурением.

Таким образом, данные теоретических и полевых работ показали возможность обнаружения методом ЗСБЗ водоносных участков пласта-коллектора в бассейнах, где распространены воды с минерализацией 300-400 г/л (к ним относится большая часть Сибирской платформы). Естественно, что выявление зон развития этих пластов повышает эффективность геологоразведочных работ, особенно если учесть вероятность широкого распространения на этой территории локушек неструктурного типа.
Заключение

Основным результатом работы является обоснование перспективности применения нового метода структурной электроразведки - становления поля в ближней зоне (ЗСБЗ), разработка приёмов его реализации, определение задач, решаемых с помощью метода на Сибирской платформе и внедрение метода в практику геофизических работ в этом регионе.

Выполненные исследования включают в себя:

I. Анализ основных закономерностей становления поля в ближней зоне. При этом
а) показано, что метод ЗСБЗ обладает большей разрешающей способностью, локальностью исследований, а при решении ряда задач и большей глубинностью по сравнению с зондированием в дальней зоне;
б) установлено, что метод ЗСБЗ характеризуется наиболее узкой областью действия принципа эквивалентности сравнительно с методами ВЗЗ и ЧЗ;
в) получены асимптотические выражения компонент электromагнитного поля электрического и вертикального магнитного диполей для поздней стадии становления в четырёхслойных средах с проводящим и изолирующим основанием;
г) проведен анализ разрешающей способности, глубинности и локальности исследования установок, измеряющих компоненты электромагнитного поля в ближней зоне электрического и вертикального магнитного диполей, при этом показано, что наибольшей чувствительностью к изменению параметров разреза обладают горизонтальные компоненты магнитного поля (H_T и H_x) и их производные по времени, а наименьшее влияние вертикального контакта проводящего пласта с изолятором испытывают установки с индукционным возбуждением поля и ориентированные по простиранию неоднородности;
д) выявлены основные закономерности влияния негоризонтальных поверхностей раздела на электрическое поле вертикального магнитного диполя, оценены минимальные размеры антиклинальной структуры фундамента, при которых практически возможно её обнаружение, исследован характер и степень проявления высокоземных экранов в результатах наблюдений, установлена об-
ласть времен и параметров разреза, при которых качественная оценка влияния структур опорного горизонта и экрана может быть получена путем суммирования аномальных эффектов от каждого из них в отдельности;

e) исследованы основные закономерности поведения нестационарного электромагнитного поля в присутствии соосного с источником тонкого диска, погруженного в однородное полупространство и двухслойную среду, установлены допустимые соотношения между глубиной залегания и радиусом диска, при котором возможно обнаружение его по результатам наблюдений, проанализировано влияние переменной (по радиусу) продольной проводимости диска на кривые кажущихся удельных сопротивлений и проводимостей, определены условия, при которых возможны приближенные способы расчета.

2. Разработана методика интерпретации кривых кажущихся удельных сопротивлений для производной по времени от вертикальной компоненты магнитного поля электрического и вертикального магнитного диполей, включающая в себя создание
a) приемов послойной количественной интерпретации кривых зондирования и оценку ошибок их применения;

b) способов определения суммарных параметров разреза, в том числе использующих полученные аналитические зависимости координат характерных точек кривых кажущихся удельных сопротивлений от суммарной проводимости, мощности и продольного сопротивления надопорной толщи;

в) приемов графического построения кривых зондирования.

Кроме того, исследованы различные приемы интерпретации кривых \(R_t \) (\(B_z \)) над двухслойным разрезом, содержащим структуры опорного горизонта, высокоомного экрана и тонкий проводящий диск. Оценены ошибки определения параметров разреза при использовании методики интерпретации, разработанной для горизонтально-нестационарных сред.

3. Исследованы основные технические параметры аппаратуры и установок наблюдений. В частности,

а) для всех трех типов установок, регистрирующих \(B_z \) (с тальвегическим и индуктивным возбуждением при разнесенных и соосных рамках), оценен допустимый уровень методических и топо-геодезических погрешностей, позволяющий определить значе-
ния кажущегося удельного сопротивления с ошибкой не свыше 5 %. Изучены условия дипольности, точность определения разноса установки и линейных размеров датчиков, допустимые величины смещения центров соосных установок, угла наклона и различия в высотном положении датчиков;
б) разработаны способы учета влияния недипольности установок;
в) рассчитана оптимальная форма импульса тока и проанализированы результаты ее применения;
г) исследованы параметры аппаратуры, реализующей наблюдения становлением поля в ближней зоне при широком изменении геоэлектрических характеристик разреза, в том числе динамический и временной диапазон сигнала, величины моментов генераторного и приемного датчиков, необходимые для картирования фундамента при различной глубине его залегания, длительность импульса прямоугольной формы и стабильность его амплитуды, форма фронта включения тока, создаваемая некоторыми типами коммутаторов;
д) сформулированы общие требования к аппаратуру, послужившие основой при создании цифровой электrorазведочной станици "Цикл". Применение в этой аппаратуре синхронного накопления сигнала и фильтрации позволило уменьшить вес всей станции, что, в свою очередь, дало возможность проводить работы в труднопроходимых районах Сибири.

4. Теоретически обоснована и полевыми работами в различных районах Сибирской платформы доказана эффективность применения метода ЗСБЗ для изучения строения осадочной толщи (расчленение разреза по геоэлектрическим горизонтам и картирование структур чехла) под траппами.

5. Метод зондирования становлением поля в ближней зоне и аппаратура "Цикл" внедрены в практику работ всех геологоразведочных организаций проводящих исследования на Сибирской платформе: трестах "Красноярскнефтегазразведка", "Якутнефтегазразведка" и Восточном геофизическом тресте. Согласно оценке, выполненной производственными организациями, применение метода ЗСБЗ с аппаратурой "Цикл" повышает геологическую и экономическую эффективность геофизических работ.

6. Обоснована и экспериментально (в пределах Непско-Бо-
торбинской антенны) показана возможность выявления методом ЗСБЗ зон развития пласта-коллектора, насыщенного рассольными водами. Реализация этой возможности значительно повышает геологическую и экономическую эффективность геологоразведочных работ при поисках перспективных на обнаружение нефти и газа участков, а на площадях с выявлень нефтегазоносности совместно с сейсморазведкой — при установлении контура продуктивных отложений. Полученные результаты послужили основой для составления СНИИГТиМСом предложения Министерству Геологии СССР "Об ускоренном изучении нефтегазоносности Нельссо-Ботуобинской антенны методом ЗСБЗ".

7. Намечены пути дальнейшего совершенствования метода зондирования становливением поля в ближней зоне при решении на Сибирской платформе задачи изучения строения осадочного чехла в выявленных в разрезе пластов-коллекторов, насыщенных минерализованными водами, с целью увеличения глубинности исследования и производительности работ, повышения разрешающей способности метода при изучении сред, содержащих несколько проводящих горизонтов. В частности, предусматривается: a) развитие теории метода для неоднородных и негоризонтальных сред, b) разработка способов машинной интерпретации результатов наблюдений, в) применение установок дифференциальных зондирований и плотных систем наблюдений, г) регистрация горизонтальных компонент магнитного поля с помощью индукционных датчиков и криомагнитометров, д) комплексирование метода ЗСБЗ с другими геофизическими методами (в первую очередь с сейсмическими) с целью прямых поисков залежей нефти и газа.

Содержание диссертации опубликовано в следующих основных работах автора:

3. Поздняя стадия в методе зондирования становливением поля в ближней зоне "Геология и геофизика", № 5, 1971 (Соавторы Г.А.Исаев, А.А.Кауфман).

5. Методика интерпретации кривых ЗСБЗ типа Н. Тр. СНИИГТиМС, вып.133, 1971 (Соавтор В.В. Финогеев).

6. Об интерпретации трехслойных кривых ЗСБЗ типа А. "Геология и геофизика", № 1, 1972 (Соавтор Г.А. Исаев).

7. Кривые зондирования становлением поля типа К. "Геология и геофизика", № 8, 1972.

9. Зондирования становлением поля в ближней зоне в горизонтально-неоднородных средах. Тр. СНИИГТиМС, вып.156, 1972 (Соавтор В.Н. Шатохин).

10. Результаты опытных работ методом ЗСБЗ в западной части Сибирской платформы. Тр. СНИИГТиМС, вып.156, 1972 (Соавтор А.К. Захаркин).

12. О влиянии рельефа дневной поверхности в методе ЗСБЗ. "Геология и геофизика", № 4, 1973 (Соавтор М.М. Гольдман).

14. О возможности картирования уступа фундамента методом ЗСБЗ "Геология и геофизика", № 6, 1973 (Соавтор В.Н. Шатохин).

15. Настояления по электроразведочным работам ЗСБЗ (интерпретация), СНИИГТиМС, 1973.

17. Опыт применения метода ЗСБЗ в восточной части Иркутского амфитеатра. "Геология и геофизика", № 9, 1973 (Соавторы В.П. Горностаев, В.М. Ланкратов).

20. Обоснование технических условий построения электроразведочной станции, предназначаемой для метода ЭСБЗ. Тр. СНИИГТГиМС (Соавторы А.К. Захаркин, Д.И. Кунин, В.Н. Шатохин).

22. О влиянии тонкого высокоомного вертикального пласта на результаты ЭСБЗ. "Геология и геофизика", № 3, 1974.

23. Методика и результаты применения метода ЭСБЗ при изучении осадочных образований на Сибирской платформе. В кн. "Разведочная геофизика СССР на рубеже 70-х годов"."Недра", 1974 (Соавторы В.М. Бубнов, А.К. Захаркин и др.)

25. О зондировании становлением поля с совмещенными индукционными петлями. Изв. ВУЗов "Геология и разведка", № 6, 1974 (Соавторы А.А. Кауфман, Т.М. Морозова).

27. Оценка оптимальной формы импульса тока при зондировании методом становления поля."Геофизика и аппаратура", вып. 56, 1974 (Соавторы Л.С. Герасимов, Б.М. Рогачевский).

29. Изучение приборных зон Камско-Кинельских прогибов методом ЭСБЗ. "Советская геология", № 4, 1976 (Соавторы В.И. Вдовин, Б.Л. Гольштейн и др.)
30. Экспериментальное исследование поля в ближней зоне. М., "Недра", 1976 (Соавторы А.К. Захранкин, Д.И. Кунин, Б.М. Рогачевский и др.)

31. Некоторые закономерности кривых зондирования становлением поля в ближней зоне. Прикладная геофизика, вып. 34, 1976.

32. Возможность выявления зон развития коллектора методом ЭСЗ на Бережновоязной площади Миринского свода. Тр. СНИИГГ, вып. 239, 1976 (Соавторы В.С. Сурков, В.В. Финогеев, В.П. Никитин и др.)

33. Дифференциальные зондирования как один из способов повышения разрешающей способности метода ЭСЗ. Тр. СНИИГГ, вып. 239, 1976 (Соавтор А.К. Захранкин).

Кроме того, в период 1969-1976 гг. издано с участием автора восемь методических пособий: альбомов кривых зондирования становлением поля в ближней зоне с описанием методики их интерпретации:

- двухслойных (1969 г.);
- трехслойных типа Н и А (1970 г.), типа К (1970 г.), типа Q (1972 г.);
- четырехслойных (1972 г.);
- двухслойных кривых зондирования становлением электрического поля заземленного диполя (1972 г.);
- в средах с неоднородностями горизонтально-слоистого разреза (по результатам моделирования - 1974);
- двухслойных кривых зондирования становлением горизонтальных компонент магнитного поля (1976 г.).

Содержание диссертации докладывалось на Всесоюзном семинаре по методу становления поля в ближней зоне (г. Саратов, 1971), УМ (г. Львов, 1972) и УНТ (г. Томск, 1976) Всесоюзных геофизических конференциях, всесоюзной научно-технической конференции "Прямые методы поисков нефти и газа" (г. Ивано-Франковск, 1974), Всесоюзной конференции "Комплексные геолого-геофизические методы поисков и подготовки структур под глубокое бурение на нефть и газ в Восточной Сибири" (г. Красноярск, 1975), Всесоюзном семинаре "Обмен опытом в области геохимических и геофизических методов поисков залежей нефти и газа" (г. Гурьев, 1975).